# Serampore Girls'College Report of Chemistry Year 2021-2022 & 2022-2023

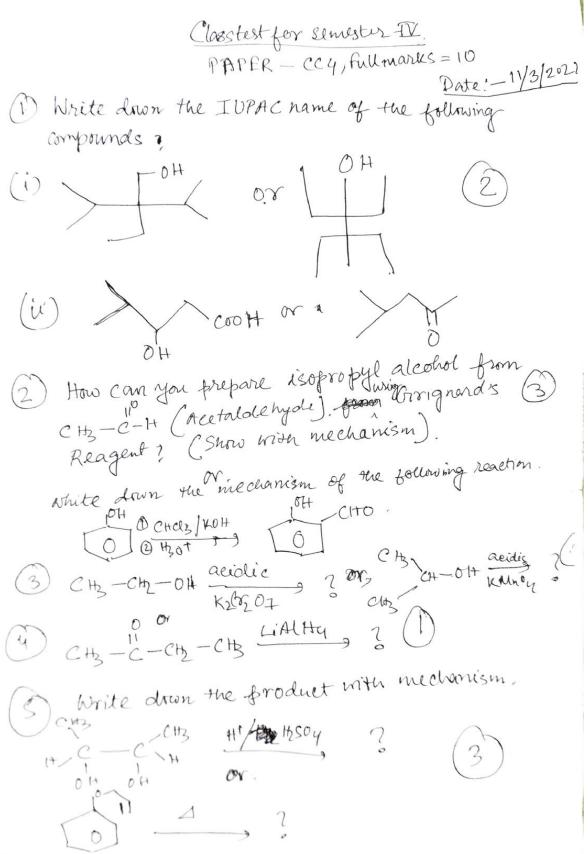
By

Dr. Ipsita Chakraborty

## Question set and Mars-sheet of different semester

|                                                                                                                            | Central Class Test                                                                                       |                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|                                                                                                                            | Serampore Girls' Coll                                                                                    | ege                                                                                                                |
|                                                                                                                            | Subject: Chemistry                                                                                       |                                                                                                                    |
|                                                                                                                            | Paper:CC2                                                                                                |                                                                                                                    |
|                                                                                                                            | Semester: II                                                                                             |                                                                                                                    |
|                                                                                                                            | Full Marks: 20                                                                                           | Date: 20/04/2022                                                                                                   |
| যেকোন ৫ টি প্রে<br>আচিক উত্তর্                                                                                             | क मतेवाहने के दिए                                                                                        | $5X_1=5$ entum c. Conservation of energy,                                                                          |
| a. Conservation of<br>d. Conservation                                                                                      | of work.                                                                                                 |                                                                                                                    |
| 2. If heat is supplied t                                                                                                   |                                                                                                          | process the internal energy ( $\Delta U$ ) of the none of these.                                                   |
| a. Zero, b. positive                                                                                                       | ocess enthalpy change ( $\Delta H$ ) v, c. negative d. none of these.                                    |                                                                                                                    |
| <ol> <li>From zero<sup>th</sup> law of<br/>a. heat, b. work c. int</li> </ol>                                              | thermodynamics we get the co<br>ernal energy d. temperature.                                             | ncept of                                                                                                           |
| <ol> <li>Which one is the pa<br/>a. Internal energy,</li> </ol>                                                            | th function<br>b. enthalpy, c. heat, d. temper                                                           | rature.                                                                                                            |
| <ol> <li>Which one of the for<br/>a. Weight, b. volur</li> </ol>                                                           | llowing is intensive property<br>ne, c. viscosity, d. kinetic ene                                        | rgy                                                                                                                |
| 7. For an adiabatic pro-<br>a. $PV=K$ , b. $PV^{\gamma}=$                                                                  | cess<br>K c. TYV=K d. $PV^{(\gamma-1)} = K$ , w                                                          | here K is a constant and $\gamma = Cp/Cv$ .                                                                        |
| II. Please fill in the blank                                                                                               | (any 5)                                                                                                  | 5×1=5                                                                                                              |
| <ol> <li>The mathematical</li> <li>Pressure is an example.</li> <li>Mass and energy b</li> <li>Human body is an</li> </ol> | expression of enthalpy (H) is<br>pple of property.<br>oth cannot be transferred to<br>example of system. | e work done is according IUPAG<br>according IUPAG<br>the surrounding from system.<br>eans ΔH is negative is called |
| reaction.                                                                                                                  | ess remains consta                                                                                       |                                                                                                                    |

(Please turn over the page)


III. Write down the answer briefly (any 5)

5×2=10

 Categorise the extensive and intensive properties. Density, heat capacity, Boiling point, momentum, surface tension.

পদার্খের কোন ধর্ম গুলি এক্সটেন্সিভ (ব্যাপক চল) এবং কোন ধর্মগুলি ইন্টেন্সিভ (সংকীর্ণ চল) তা লেখো। ঘনত্ব, তাপগ্রাহীতা, স্ফূটনাঙ্ক, ভরবেগ, পৃষ্ঠটান।

- Why PV curve of isothermal process is less steep (slope is less) than the PV curve of adiabatic process?
   সমোষ্ণ প্রক্রিয়ার PV curve এর নতি কেন বদ্ধতাপ প্রক্রিয়ার PV curve এর নতির চেয়ে কম হয় কেন?
- Derive the relationship between molar heat capacity at constant pressure (Cp) and molar heat capacity at constant volume (Cv) for an ideal gas? একটি আদর্শ গ্যাসের ক্ষেত্রে সমচাপে মোলার তাপগ্রাহীতা (Cp) আর সমায়তনে মোলার তাপগ্রাহীতার (Cv) সমীকরণটি প্রতিষ্ঠা করো।
- 4. What do you mean by thermochemical equation? Give an example. তাপরাসায়নিক সমীকরণ বলতে কি বোঝ? উদারহরণ দাও।
- 5. Write down the two basic differences between reversible and irreversible process? প্রত্যাবর্তক ও অপ্রত্যাবর্তক প্রক্রিয়ার দুটি প্রধান শ্বীস্থার লেখো।
- 6. After a reversible isothermal expansion of an ideal gas, the volume of the gas changes from 5L to 50L. How much work is done on the system, where the temperature is kept constant at 27°C. How much heat is changed during the process? একটি প্রত্যাবর্তক সমোষ্ণ প্রক্রিয়ায় একটি আদর্শ গ্যাসের প্রসারণ ঘটিয়ে গ্যাসের আয়তন ৫লিটার থেকে ৫০ লিটার করা হল, ২৭°C তাপমাত্রায়। কত পরিমাণ কার্য করা হল সিস্টেমের ওপর? আর তার ফলে কত পরিমাণ তাপ গ্রহণ বা শোষিত হল তা লেখো।
- 7. The initial temperature of a monoatomic ideal gas is 37°C and the final temperature after an reversible adiabatic expansion is 25°C. What is the internal energy change of 2 moles of the gas. Molar Cv for ideal monoatomic gas =1.5 R. একটি ২ মোল monoatomic আদর্শ গ্যাসের প্রাথমিক তাপমাত্রা ৩৭°C এবং রুদ্ধতাপ প্রত্যাবর্তক প্রক্রিয়ায় গ্যাসটির প্রসারণ ঘটানোর ফলে চূড়ান্ত তাপমাত্রা হল ২৫°C। গ্যাসের আভ্যন্তরীণ শক্তি ফেন্ট্রুকত হল। Molar Cv for ideal monoatomic gas =1.5 R
- 8. Show that the enthalpy change (ΔH) is actually the heat change associated with the mechanical process at constant pressure. দেখাও যে এনখ্যান্নি পরিবর্তন (ΔH) আসলে সমচাপে ঘটিত একটি mechanical process-এর তাপ পরিবর্তনের সাথে সমান।



Serampore Girls' College

### **Internal Examination**

Subject: Chemistry

### Paper: CC2

Semester: II

Full Marks: 10

Answer any 5

Date - 2/12/2022

5\*2=10

- 1. Draw the PV diagram of the Carnot cycle and describe each step (only mention the nature of work, mathematical expression is not required).
- 2. If the temperatures of the hot reservoir and the cold reservoir of a Carnot engine, are respectively 400 K and 280 K, what is the efficiency of that engine?
- 3. Write down the Clausius Clapeyron equation and show during liquid to vapour transition dP/dT is always positive.
- 4. One mole of an ideal gas expands from 1 L to 5 L isothermally at 298 K. Calculate the entropy change of the gas.
- 5. Write down the mathematical form of Helmholtz Free energy (A). What is its relation with Gibb's free energy?
- 6. Draw the unit cell of a face-centered cubic lattice (fcc) and calculate the number of atoms per unit cell?
- 7. Draw the phase diagram i.e. pressure (P) versus temperature (T) curve of water and indicate the following things in the diagram: 1. Triple point, 2. Solid, 3. Liquid and 4. Vapour phase.
- 8. What do you mean by the degrees of freedom (F)? What is the value of F at any triple point?
- 9. Write down the Bragg's equation and explain each term.

#### যেকোন ৫ টি প্রশ্নের উত্তর দাও

#### 0\*0=00

১। Carnot engine-এর ক্ষেত্রে PV-diagram টি আঁকো। প্রতিটি ধাপে কার্যের বিবরণ দাও। (গাণিতিক সমীকরণ লেখার দরকার নেই)।

২। যদি একটি কার্নোট ইঞ্জিনের hot reservoir এবং cold reservoir এরতাপমাত্রা যথাক্রমে ৪০০ কেল্ভিন এবং ২৮০ কেল্ভিন হয়, তাহলে ঐ ইঞ্জিনের কর্মদক্ষতা কত ?

৩। ক্লসিয়াস ক্ল্যাপেইরনের গাণিতিক সমীকরণটি লেখো। দ্যাখাও যে তরল থেকে বাষ্প, এই পরিবর্জ্নের ক্ষেত্রে, dP/dT এর মান সর্বদা ধনাত্মক হয়।

৪। ২৯৮ কেলভিন তাপমাত্রায়এক মোল আদর্শ গ্যাসের আয়তন ১ লিটার থেকে বেড়ে হল ৫ লিটার। গ্যাসের এনট্রপির কত পরিবর্তন হল?

৫।হেলমোতজ মুক্ত শক্তি (A) এর গাণিতিক রুপ লেখো। গিবস মুক্তশক্তির (G) সাথে এর সম্পর্ক কি তা লেখো।

৬। Face-centred cubic lattice (fcc) এর unit cell এর ছবি আঁকো এবং প্রতিটি সেলে কতগুলি পরমাণু থাকে তা গণণা করো।

৭। জলের অর্থাৎ চাপ বনাম তাপমাত্রার পরিবর্তনের লেখচিত্র আঁকো। এবং ছবিতে ট্রিপল পয়েন্ট, কঠিন, তরল এবং বাষ্পীয় দশা চিহ্নিত করো।

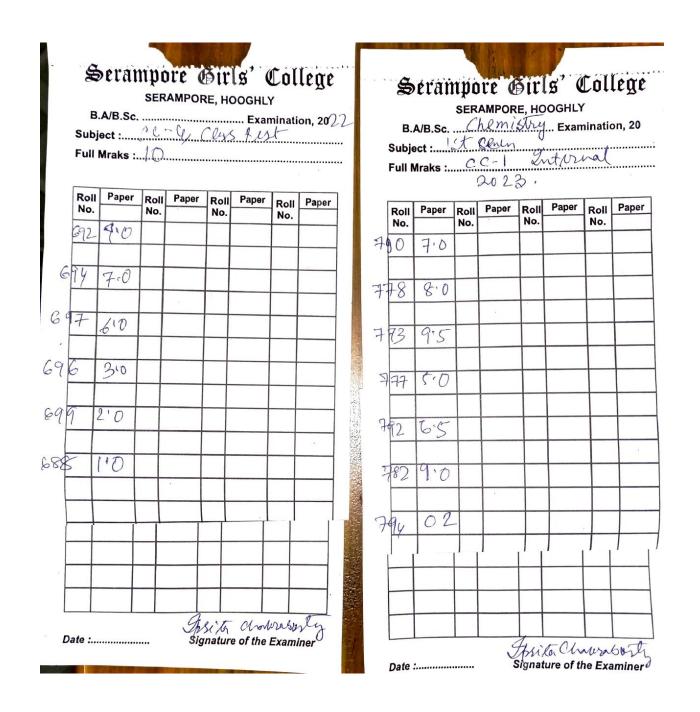
৮। Degrees of freedom বলতে কি বোঝ? Triple point এ F এর মান কত?

৯। ব্র্যাগস (Braggʻs) এর সমীকরণ টি লেখো এবং প্রতিটি সংকেতের বিবরণ দাও।

**Central Class Test** 

Sem- VI

Subject: Chemistry


Paper: DSE-B2

Date: 29/3/2023, Time: 1:30 pm - 2;30 pm

Ans any ten

10\*2=20

- 1. What is wave number? Write the unit of molar extinction coefficient.
- 2. What do you mean by instrumental deviation of Beer-Lambert law?
- 3. The transmittance of a KMnO4 solution of 0.02M is 60%. Calculate its molar extinction
  - coefficient ( $\epsilon$ )? Consider path length is 1 cm.
- 4. Calculate the energy of radiation having wavelength 550 nm.
- 5. Write two differences between line spectra and continuous spectra.
- 6. Why cuvette is made by quartz? Write two sources of IR radiation.
- 7. What is auxochrome? Give example.
- 8. Benzene is colorless but aniline is colored. Why?
- 9. Why stretching frequency of O-H bond of CH3-OH larger that O-D bond of CH3-OD.
- 10. Calculate the number of vibrational modes of  $CO_2$  and  $H_2O$ .
- 11. Why 3d-3d transition is not allowed but 2s to 2p transition is allowed?
- 12. What do you mean by selection rule? Write the selection rule for rotational spectroscopy.
- 13. What are the criteria to be a good source of a spectrophotomer? Write one difference between prism and diffraction grating.
- 14. Write two differences between double beam and single beam spectrometer



| B. A/B. Sc.       Examination, 20         Subject       Constraints, Constraints, 20         Subject       Constraints, 20         Full Mrake       Constraints, 20         Subject       Constraints, 20         No.       Paper       Roll       Paper         No.       Paper       Roll       Paper       Roll       Paper         Sold (2 G + 0)       Image: Constraints, 20       Subject       C                                                                                                                                                    |                           |         | SER       | AMPOR | E, HC     | OGHLY       | (                                                             |       |          |         | CED  | AMPOR | E HO         | (g' (       | 1      |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------|-----------|-------|-----------|-------------|---------------------------------------------------------------|-------|----------|---------|------|-------|--------------|-------------|--------|--------|
| Subject ::::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B.A/B.Sc. Examination, 20 |         |           |       |           | в.          | SERAMPORE, HOOGHLY<br>B.A/B.Sc. (M. Maral, 2nd Semination, 20 |       |          |         |      |       |              |             |        |        |
| Roil       Paper       Roil<                                                                                                                                                                                                                                                                                | Subje                     | ect :(  | lan       | 200   | )2        |             |                                                               |       | ' Subie  | ct ·    | Ch   | and Q | tru.         | 1CC         | L      |        |
| Rot         Paper         Rot         Paper <t< th=""><th>Full</th><th>Mraks :</th><th></th><th></th><th>22</th><th></th><th></th><th></th><th>· Full N</th><th>Iraks :</th><th>2</th><th>029</th><th>ر<br/>الکسیرا</th><th><u>C1</u> ±</th><th></th><th></th></t<> | Full                      | Mraks : |           |       | 22        |             |                                                               |       | · Full N | Iraks : | 2    | 029   | ر<br>الکسیرا | <u>C1</u> ± |        |        |
| No.         No.         No.         No.         No.         No.         No.           3 $52$ $6 \cdot 0$ $1 \cdot 0^{-1}$                                                                                                                                                                                                                                                                                        |                           |         |           |       |           |             |                                                               |       |          |         |      |       |              |             |        |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           | Paper   |           | Paper |           | Paper       |                                                               | Paper |          | Paper   |      | Paper |              | Paper       |        | Paper  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 362                       |         |           |       |           |             |                                                               |       |          | Q.E     | 140. |       | -            |             |        |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |         | $\vdash$  |       |           |             |                                                               |       |          | 100     |      |       |              |             |        |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 263                       | 7.5     | $\vdash$  |       |           |             |                                                               | -     | 377      |         |      |       | $\square$    |             |        |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |         | $\vdash$  |       |           |             |                                                               |       |          |         |      |       | $\square$    |             |        |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 72                      | 2-0     |           |       | $\square$ |             | -                                                             |       |          |         |      |       |              |             |        |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           | 1       |           |       | $\vdash$  |             |                                                               |       |          |         | -    |       | $\square$    |             |        |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 201                       | 30      | -         |       | $\square$ |             |                                                               |       |          | 1986    | -    |       | $\square$    |             |        |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |         | -         |       | Η         |             |                                                               |       |          |         |      |       |              |             |        |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 370                       | -       |           |       | $\vdash$  |             |                                                               |       |          |         | -    |       |              |             |        |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                         |         | -         |       | $\square$ |             |                                                               |       |          |         | -    |       | 1            |             |        |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .316                      | Cin     | $\vdash$  |       | $\square$ |             |                                                               |       |          |         |      |       | -            |             |        |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                         |         | -         |       |           |             |                                                               |       | 1        |         | -    |       | 1            |             |        |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 300                       | 2.0     |           |       | $\square$ |             |                                                               |       | 3        |         |      |       | 1            |             |        |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           | 20      |           |       |           |             |                                                               |       |          |         | -    |       | 1            |             |        |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 247                       | 6.0     |           |       |           |             |                                                               |       |          |         | 1    |       |              |             |        |        |
| 35575       75       125       125       1         260       125       125       1       1         768       30       125       1       1         3557       10       125       1       1         3557       10       125       1       1         768       30       1       1       1       1         3557       10       1       1       1       1         3557       10       1       1       1       1         3557       10       1       1       1       1       1         3557       10       1       1       1       1       1       1         3557       10       1       1       1       1       1       1       1         3557       10       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                         |         | $\square$ |       |           |             |                                                               |       | 12       |         | 1    |       |              |             |        |        |
| 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ote                       | 7.5     | $\square$ |       |           |             |                                                               |       |          |         |      |       |              |             |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 222                       | 172     | $\square$ |       |           |             |                                                               |       | 35       | 1.04    | 1    |       |              |             |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 000                       | -       |           |       |           |             |                                                               |       | 3        |         | )    |       |              |             |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200                       |         |           |       |           |             |                                                               |       |          | C.      | 1    |       |              |             |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 160                       | 30      | $\square$ |       |           |             |                                                               |       |          |         |      |       |              |             |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TYD                       |         | $\square$ |       |           |             |                                                               |       |          |         |      |       |              |             |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 360                       | 40      | $\square$ |       |           |             |                                                               |       |          |         |      |       |              |             |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           | 10      | $\square$ |       |           |             |                                                               |       |          |         |      |       |              |             |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                         |         |           |       |           |             |                                                               |       |          |         |      |       |              |             |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |         |           |       |           |             |                                                               |       |          |         |      |       |              | 1           |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |         | $\square$ |       |           |             |                                                               |       |          |         |      |       |              |             | _      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |         | $\square$ |       |           |             |                                                               |       |          |         |      |       |              |             |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                         |         |           |       |           |             |                                                               |       |          |         |      |       |              |             | -      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |         |           | _     |           |             |                                                               |       |          |         |      |       |              |             | -      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |         |           |       |           |             |                                                               |       |          |         |      |       | _            |             |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                         |         |           |       |           | $\sim$      |                                                               |       |          |         |      |       | /            | h           |        |        |
| Date :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Date .                    | L       |           | S     | ignatu    | Lire of the | e Exai                                                        | miner | Date     | 26      | 14/  | 22    | Signa        | ature of    | the Ex | aminer |

Serampore Girls' College SERAMPORE, HOOGHLY B.A/B.Sc. Examination, 20 Subject : Chemistry CIE -1 Full Mraks : 2023 DSE-B2

|      |       |      |       | 1 and and       |            |       |            |  |
|------|-------|------|-------|-----------------|------------|-------|------------|--|
| Roll | Paper | Roll | Paper | Roll<br>No.     | Paper      | Roll  | Paper      |  |
| No.  | PSER, | No.  |       | NO.             |            | No.   | 1          |  |
| -92  | 11.0  |      |       |                 |            |       | 1          |  |
| 694  | 11.0  |      |       |                 |            |       |            |  |
| :97  | 13:0  |      |       |                 |            |       |            |  |
| 96   | 15.0  |      |       |                 |            |       | n<br>Niray |  |
| 98   | 9.0   |      |       |                 |            |       |            |  |
| 99   | 6.0   |      |       |                 |            |       |            |  |
| 88   | 14.0  |      |       |                 |            |       |            |  |
| -    |       |      |       |                 |            |       |            |  |
|      |       |      |       |                 |            |       |            |  |
| 1    |       |      |       |                 |            |       |            |  |
|      |       |      |       |                 |            |       |            |  |
|      |       | -    |       | +               |            |       |            |  |
|      |       |      |       |                 |            |       |            |  |
|      |       |      |       |                 |            |       |            |  |
|      |       |      | 9     | PS id<br>Signal | ture of th | or Ky | abor       |  |
| Date | 1     |      |       |                 |            |       |            |  |
|      |       |      |       |                 |            |       |            |  |